Bounds on Membership Uncertainty: Exercises

Mathias Winther Madsen

January 15, 2015

A Stirling Bound The power series expansion of the exponential function is

$$
\exp (x)=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\cdots+\frac{x^{m}}{m!}+\cdots
$$

(If you didn't happen to know this, you can see that it must be the case by expanding the Taylor polynomial of $\exp (x)$ in $x=0$, or by thinking about what kind of polynomial would satisfy the differential equation $p^{\prime}(x)=p(x)$.)

Use this expansion to prove that

1. $k!\leq(k / e)^{k}$
2. $k!\leq 2(k / e)^{k}$

Big Bonferroni Correction A sample of size $2 t=2 \times 10^{4}$ is drawn from some distribution, and this sample is then randomly split up into two half-samples of size $t=10^{4}$.

1. For any specific event A, these two half-samples define two frequencies, $f_{1}(A)$ and $f_{2}(A)$. Find an explicit upper bound on the probability that $\left|f_{1}(A)-f_{2}(A)\right|>0.1$.
2. We now make such a comparison for each of $\Phi\left(3,2 \times 10^{4}\right)$ different sets. Find an explicit upper bound on the probability that $\left|f_{1}(A)-f_{2}(A)\right|>\varepsilon$ for at least one A.
