ILLC Project Course in Statistical Learning Theory

Mathias Winther Madsen
mathias.winther@gmail.com
Institute for Logic, Language, and Computation
University of Amsterdam

January 2015

Information Theory

Problem

We are provided with a communication channel for binary information which tends to transmit as much as 3 in every 1000 bits wrongly (1 as 0 , or 0 as 1).

If we feed a sequence of 1000 bits into this
 channel, how many different sequences might come out?

Information Theory

$$
\begin{aligned}
& \Phi(k, t)=\binom{t}{0}+\binom{t}{1}+\binom{t}{2}+\cdots+\binom{t}{k}
\end{aligned}
$$

Information Theory

Problem

We are provided with a communication channel which transmits each individual bit wrongly with probability 0.003 .

If we feed a sequence of 1000 bits into this channel, how many "reasonably likely"
 output sequences are there?
$000101110101 \ldots \longrightarrow$ Channel $\longrightarrow 01101110001 \ldots$

Information Theory

Problem

With the point probabilities

x	t	s	e
$p(x)$.25	.50	.25

1. What is Pr (stetsesses)?
2. What's the most probable sequence?

Information Theory

Information Theory

Information Theory

Information Theory

Information Theory

Definition

The entropy of a random variable X is

$$
H=E\left[\log \frac{1}{p(X)}\right]=-E[\log p(X)]
$$

Definition

An ε-typical sequence of length t is a sequence for which

$$
\left|\log \frac{1}{p\left(x_{1}, x_{2}, \ldots, x_{t}\right)}-H t\right|<\varepsilon
$$

Information Theory

The Weak Law of Large Numbers

For every $\varepsilon>0$ and $\alpha>0$ there is a t such that

$$
\operatorname{Pr}\left\{\left|\frac{\sum_{i=1}^{t} X_{i}}{t}-E[X]\right|>\varepsilon\right\} \leq \alpha .
$$

The Asymptotic Equipartition Property

Eventually, everything has the same probability.
The Source Coding Theorem
For large t, there are only $2^{H t}$ sequences worth caring about.

Information Theory

Information Theory

$$
\exp \left(H_{2}(q)\right)=\left(\frac{1}{q}\right)^{q}\left(\frac{1}{1-q}\right)^{1-q}
$$

Information Theory

$$
\exp (D(q \| p))=\left(\frac{p}{q}\right)^{q}\left(\frac{1-p}{1-q}\right)^{1-q} \leq \exp \left(-2(q-p)^{2}\right)
$$

