ILLC Project Course in Statistical Learning Theory

Mathias Winther Madsen mathias.winther@gmail.com

Institute for Logic, Language, and Computation University of Amsterdam

January 2015

Problem

I select one of four sets:

1.
$$A_1 = \mathbb{N};$$

2. $A_2 = \{1, 3, 5, \ldots\};$
3. $A_3 = \{2, 4, 6, \ldots\};$
4. $A_4 = \emptyset.$

Asking only yes/no questions, how quickly can you determine which set I chose?

Problem

I select a set $A \subseteq \mathbb{N}$ containing two or fewer elements, and you ask me whether $x \in A$ for x = 1, 2, 3, 4.

How many ways can I potentially answer those four questions?

Definition

A **conditional membership process** is a binary process defined in terms of the following parameters:

- **1**. a sample space Ω ;
- **2**. a set *S* of subsets $A \subseteq \Omega$;

3. a sequence $x = x_1, x_2, x_3, \ldots$ of elements of Ω .

This process admits the sequences $y = y_1, y_2, y_3, ...$ for which there is an $A \in S$ such that

$$y_i = \begin{cases} 1 & \text{if } x_i \in A \\ 0 & \text{if } x_i \notin A \end{cases}$$

$$A_1 = \{1, 2, 3\}; \quad A_2 = \{1, 3\}; \quad A_3 = \{2, 3\}.$$

Definition

The **projection** of a portfolio *S* onto a sample *x* is

$$S \downarrow x = \{A \cap \{x_1, x_2, \ldots, x_t\} \mid A \in S\}.$$

Definition

A **membership process** is a family of conditional membership processes, one for each sequence $x = x_1, x_2, x_3, ...$

Definition

The growth function of a membership processes is

$$N(t) = \max_{x} N(t | X = x).$$

Problem

Let $\Omega = \mathbb{N}$ and $S = \{\mathbb{N}, \text{odds}, \text{evens}, \emptyset\}$. What is the growth function and entropy rate of the corresponding membership process?

Problem

Let $\Omega = \mathbb{R}$ and $S = \{\{r \le \theta\} \mid \theta \in \mathbb{R}\}$. What is N(t) and H?

Problem

Let *S* consist of all sets $A \subseteq \Omega$ with $|A| \leq 2$. What is N(t) and *H*?

$\Phi(k,t) = \begin{pmatrix} t \\ 0 \end{pmatrix} + \begin{pmatrix} t \\ 1 \end{pmatrix} + \begin{pmatrix} t \\ 2 \end{pmatrix} + \dots + \begin{pmatrix} t \\ k \end{pmatrix}$						
	k = 0	k = 1	k = 2	k = 3	<i>k</i> = 4	<i>k</i> = 5
t = 0	1	1	1	1	1	1
t = 1	1	2	2	2	2	2
t = 2	1	3	4	4	4	4
t = 3	1	4	7	8	8	8
<i>t</i> = 4	1	5	11	15	16	16
<i>t</i> = 5	1	6	16	26	31	32

For k = 4 and t = 4, 6, 8, 10, 12, 14:

Same, logarithmic plot:

$$\begin{pmatrix} t \\ k \end{pmatrix} = \begin{pmatrix} t-1 \\ k-1 \end{pmatrix} + \begin{pmatrix} t-1 \\ k \end{pmatrix}$$
$$\Phi(k,t) = \Phi(k-1,t-1) + \Phi(k,t-1)$$

Theorem

Suppose there is a k such that $N(t | x) \ge \Phi(k, t).$ Then $x = x_1, x_2, \dots, x_t$ has a subsequence $z = z_1, z_2, \dots, z_k$ for which $N(k | z) = 2^k.$

Theorem

Suppose that for any subsequence z of x,

 $N(k \mid z) < 2^k.$

Then

$$N(t \mid x) < \Phi(k, t).$$

Proof.

By induction on *t* for a fixed but arbitrary *k*.