ILLC Project Course in Statistical Learning Theory

Mathias Winther Madsen
mathias.winther@gmail.com
Institute for Logic, Language, and Computation
University of Amsterdam

January 2015

Membership Processes

Problem

I select one of four sets:

$$
\begin{aligned}
& \text { 1. } A_{1}=\mathbb{N} ; \\
& \text { 2. } A_{2}=\{1,3,5, \ldots\} ; \\
& \text { 3. } A_{3}=\{2,4,6, \ldots\} ; \\
& \text { 4. } A_{4}=\emptyset
\end{aligned}
$$

Asking only yes/no questions, how quickly can you determine which set I chose?

Problem

I select a set $A \subseteq \mathbb{N}$ containing two or fewer elements, and you ask me whether $x \in A$ for $x=1,2,3,4$.

How many ways can I potentially answer those four questions?

Membership Processes

Definition

A conditional membership process is a binary process defined in terms of the following parameters:

1. a sample space Ω;
2. a set S of subsets $A \subseteq \Omega$;
3. a sequence $x=x_{1}, x_{2}, x_{3}, \ldots$ of elements of Ω.

This process admits the sequences $y=y_{1}, y_{2}, y_{3}, \ldots$ for which there is an $A \in S$ such that

$$
y_{i}= \begin{cases}1 & \text { if } x_{i} \in A \\ 0 & \text { if } x_{i} \notin A\end{cases}
$$

Membership Processes

$$
A_{1}=\{1,2,3\} ; \quad A_{2}=\{1,3\} ; \quad A_{3}=\{2,3\}
$$

$N(t \mid X=x)=2,3,3$

$$
x_{1}=3 \quad x_{2}=2 \quad x_{3}=1
$$

$$
N(t \mid X=x)=1,2,3
$$

Membership Processes

Definition

The projection of a portfolio S onto a sample x is

$$
S \downarrow x=\left\{A \cap\left\{x_{1}, x_{2}, \ldots, x_{t}\right\} \mid A \in S\right\} .
$$

Example

$x_{1} \quad x_{2} \quad x_{3}$

Membership processes

Definition

A membership process is a family of conditional membership processes, one for each sequence $x=x_{1}, x_{2}, x_{3}, \ldots$

Definition

The growth function of a membership processes is

$$
N(t)=\max _{x} N(t \mid X=x)
$$

Membership processes

Problem

Let $\Omega=\mathbb{N}$ and $S=\{\mathbb{N}$, odds, evens, $\emptyset\}$. What is the growth function and entropy rate of the corresponding membership process?

Problem

Let $\Omega=\mathbb{R}$ and $S=\{\{r \leq \theta\} \mid \theta \in \mathbb{R}\}$. What is $N(t)$ and H ?

Problem

Let S consist of all sets $A \subseteq \Omega$ with $|A| \leq 2$. What is $N(t)$ and H ?

The VC Bound

$$
\Phi(k, t)=\binom{t}{0}+\binom{t}{1}+\binom{t}{2}+\cdots+\binom{t}{k}
$$

	$k=0$	$k=1$	$k=2$	$k=3$	$k=4$	$k=5$
$t=0$	1	1	1	1	1	1
$t=1$	1	2	2	2	2	2
$t=2$	1	3	4	4	4	4
$t=3$	1	4	7	8	8	8
$t=4$	1	5	11	15	16	16
$t=5$	1	6	16	26	31	32

The VC Bound

For $k=4$ and $t=4,6,8,10,12,14$:

Same, logarithmic plot:

The VC Bound

$$
\begin{aligned}
& \binom{t}{k}=\binom{t-1}{k-1}+\binom{t-1}{k} \\
& \Phi(k, t)=\Phi(k-1, t-1)+\Phi(k, t-1)
\end{aligned}
$$

The VC Bound

Theorem

Suppose there is a k such that

$$
N(t \mid x) \geq \Phi(k, t)
$$

Then $x=x_{1}, x_{2}, \ldots, x_{t}$ has a subsequence $z=z_{1}, z_{2}, \ldots, z_{k}$ for which

$$
N(k \mid z)=2^{k}
$$

The VC Bound

Theorem
Suppose that for any subsequence z of x,

$$
N(k \mid z)<2^{k}
$$

Then

$$
N(t \mid x)<\Phi(k, t)
$$

Proof.

By induction on t for a fixed but arbitrary k.

