
Nondeterministic Entropy

Mathias Winther Madsen

January 13, 2015

Problem 1. A swipe code is a pattern drawn on a 3×3 chess board by dragging
your finger across the board from field to field.

How many swipe codes of length t = 4 are there? Approximately how many
swipe codes of length t = 1000 are there?

1

1 Nondeterministic Processes
Definition 2. A nondeterministic process is a collection of infinite se-
quences from some alphabet A. We call the individual members of the non-
deterministic process sample paths.

We will mostly focus on nondeterministic processes over the binary alphabet
A = {0, 1}. Some examples of such processes are:

Example 3. The unconstrained binary process: The set of all binary sequences,
without any restrictions, such as

0 0 0 1 0 0 1 0 1 0 0 0 1 1 0 0 1 1 1 0 0 1 1 . . .

Example 4. The Morse code process: The binary sequences without any con-
secutive 1s, such as

1 00 1 000 1 0000 1 0 1 000000 1 0 1 000 . . .

Example 5. The fencepost process: The binary sequences with equally-spaced
1s, such as

000 1 000 1 000 1 000 1 000 1 000 1 000 . . .

Example 6. The outspender process: The binary sequences that alternate
between growing strings of 0s and 1s, such as

0 111 00000 111111 0000000000 . . .

A nondeterministic process over a finite alphabet can be visualized as a tree.
For instance, a part of the tree corresponding to the Morse code process is shown
in Figure 1). Each infinite branch though this tree corresponds to one particular
element of this process.

· · ·0

· · ·1
0

· · ·01

0

· · ·0

· · ·10
1

Figure 1: At depth t = 3, the Morse code process has a width of N(3) = 5.

Definition 7. We will say that a nondeterministic process admits a certain
finite string if that finite string is an initial segment of a sample path from the
process. If it does, we will call the string a sample from the process. The
number of samples of length t is denoted N(t), and we call N the growth
function for the process.

2

For the unconstrained binary process, the growth function is the exponential
function N(t) = 2t, since all 2t binary strings of length t are admitted by that
process. Increasing the sample size by 1 thus doubles the number of samples
consistent with the unconstrained process. As we shall see, such exponential
growth is characteristic of many processes of practical interest.

For the Morse code process, N(t) < 2t for t ≥ 2, since not all strings are
admitted. For instance, the sample 11 is not admitted because it contains two
consecutive 1s, so N(2) = 3 rather than 4. A few more values of this growth
function are:

t 1 2 3 4 5 6 7 · · ·
N(t) 2 3 5 8 13 21 34 · · ·

These are in fact the Fibonnaci numbers, an exponentially increasing series
which roughly grows by a factor of about 1.618 every time we increment t by
one. We can thus approximate N by N(t) ≈ N(1)× 1.618t, or

N(t) ≈ N(t)× 20.694t

since 20.694 ≈ 1.618, or log2 1.618 ≈ 0.964.
The Morse code process thus admits roughly as many samples for t = t0

as the unconstrained process admits for t = 0.694 t0. For purposes of data
compression, this means that we can use the samples of length 694 from the
unconstrained process as “names” for the samples of length 1000 from the Morse
code process. We can, in other words, save about 1000−694 = 206 bits of storage
space by encoding the Morse code samples as unconstrained binary strings.

1 2 3 4 5 6 7

0

10

20

30

t

N(t)

1 2 3 4 5 6 7

2
4
8
16
32

t

N(t)

Figure 2: The growth function N(t) of the Morse code process (connected dots)
along with its exponential regression line 20.694t (dashed).

2 The Entropy Rate
These observations about asymptotic exponential growth give rise to the follow-
ing definition, first proposed by Shannon (1948):

3

Definition 8. The entropy rate of a nondeterminstic process is

H = lim
t→∞

logN(t)

t

if the limit exists. When log designates the binary logarithm log2, the entropy
rate is measured in bits; if it designates the natural logarithm ln, in nats.

The entropy rate can be seen as a measure of how nondeterministic or
“choicy” a process is, relative to the process that admits two letters per unit
of time. For a nondeterministic process over a finite alphabet A, the entropy
rate can at most be log |A|, the rate of an unconstrained process over A.

Here are some examples:

Example 9. The unconstrained binary process has an entropy rate of H = 1.

Example 10. The Morse code process has an entropy rate of approximately

H = lim
t→∞

logN(1) + log 20.694t

t
= 0.694.

Note that the initial condition N(1) actually makes no difference for the entropy
rate. This reflects the fact that the slope of a line through (1, logN(1)) and
(t, logN(t)) is almost independent of N(1) once t gets large enough.

Example 11. The fencepost process has an entropy rate of H = 0. This
is because a sample from the fencepost process is completely defined by the
position of the first 1 in the sample. Once that position has been revealed, the
rest of the sample is contains no further information.

In a sample of length t, there are t different places one can place this first
fencepost, in addition to the option of not having any 1s in the sample at all.
The fencepost process thus admits N(t) = t + 1 different samples of length t,
and its entropy rate is

H = lim
t→∞

log(t+ 1)

t
= 0.

In the limit, this process is thus as predictable as a deterministic process.

Example 12. The outspender process also has an entropy rate of H = 0, but
seeing this is a little more involved than the previous examples.

A sample from the outspender process contains a sequence of runs, alternat-
ing between 0s and 1s. Since these runs are required to increase in size after
each alternation, a sequence of r runs has to consume at least

0 + 1 + 2 + 3 + · · ·+ r =
r(r + 1)

2
≥ 1

2
r2

sample elements. A sample of length t ≥ r2/2 can therefore accommodate at
most r ≤

√
2t alternations. There are, in other words,

√
2t+ 1 possibilities for

how many completed runs such a sample may contain (including the option 0).

4

Once the number of alternations has been fixed, they also have to be dis-
tributed into the sample. Since there are t+1 spaces between t sample elements,
the number of ways we can choose these positions is at most the binomial coef-
ficient C(t+1,

√
2t), where the square root is rounded up to the nearest integer.

(It is in fact somewhat lower due to the restrictions on the run lengths, but this
approximation will be sufficiently low for our purposes.)

The number of samples from the outspender process is thus bounded by

N(t) ≤
(√

2t+ 1
)
×
(
t+ 1√

2t

)
,

and thus
logN(t)

t
≤ 1

t
log
(√

2t+ 1
)

+
1

t
log

(
t+ 1√

2t

)
.

The first of these terms tends to 0 as t → ∞. The second term can be esti-
mated by means of Stirling’s approximation, lnn! ≈ n lnn−n. After using this
approximation and doing some algebra, we can show that the only significant
terms are

1

t
log

(
t+ 1√

2t

)
≈ log(t+ 1)− log(t+ 1−

√
2t) = log

t+ 1

t+ 1−
√

2t
.

This expression tends to 0 as t→∞. Hence, logN(t)/t tends to 0 + 0 = 0, and
the entropy rate of the outspender process is H = 0.

3 Processes Without Entropy Rates
One way of thinking of the entropy rate is as a geometric average. If a population
has increased from a size of 1 to a size of N(t) over a period of t units of time,
and if we believe that it grew by roughly the same multiplicative factor in each
unit of time, then that factor must have been N(t)1/t = 2H . This geometric
average contrasts with the arithmetic average N(t)/t which characterizes the
growth of a population that grows by constant additive increments rather than
constant multiplicative factors.

This also means that H is the rate we need to assume in order to fit the
exponential growth 2Ht to the function N(t). Graphically, this corresponds to
fitting a straight line to the points (t,N(t)) and then reading off its slope.

Tt is important to remember that a nondeterministic process can fail to have
an entropy rate. This can happen for two reasons:

1. If Ω is infinite, N(t) can grow superexponentially. For instance, let Ω = N
and consider the process consisting of all sequences whose tth entry is an
element of the set {1, 2, 3, . . . , t}. An example of sample path from this
process is

1 2 3 2 5 5 2 6 3 10 10 3 7 13 7 5 10 14 18 20 . . .

5

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

t

logN(t)
t

Figure 3: An infinite alphabet can cause the average uncertainty to diverge.

0 10 20 30 40 50 60 70 80 90 100
0

1/3

2/3

1

t

logN(t)
t

Figure 4: Large oscillations in levels of predictability can mean that no expo-
nential tendency appears in the number of possible sequences.

For this process, increasing t by one corresponds to multiplyingN(t) by t+
1, so we cannot approximate the growth of this process by any exponential
function with a fixed rate H. In fact, N(t) = t!, and logN(t) thus grows
as t log t in the limit, rather than a linear function tH, as an exponential
approximation requires.

2. Convergence can also fail because logN(t)/t oscillates up and down with-
out approaching a limit. For instance, consider a nondeterministic process
admitting first 1 unconstrained bit, then 2 deterministic bits, then 4 un-
constrained bits, then 8 deterministic bits, and so on. A sample from this
process is

1 00 1011 00000000 0101100101110100 000000000000000000 . . .

where the deterministic bits are underlined for clarity. In this process, the
runs of deterministic bits are always so long that they swamp everything
that came before, bringing logN(t)/t down to roughly 1/3; but the sub-
sequent runs of nondeterministic bits are also longer than anything that

6

came before and bring it back up to roughly 2/3 again (cf. Fig. XXX). The
convergence of logN(t)/t is thus spoiled by the superlinear oscillations of
logN(t).

4 Growth Functions and Linear Algebra
In many important cases, we can find the entropy rate of a process by doing
a bit of linear algebra. In particular, this is the case for Markov processes,
that is, processes whose restrictions are defined in terms of which symbols can
and cannot occur next to each other.

Consider for instance the process over the alphabet A = {0, 1, 2} defined by
the transition graph in Figure XX. This process requires that the symbols 0
and 1 never occur twice in a row, and that the symbol 2 is never followed by
the symbol 0. We could also represent this transition graph as the matrix

T =

 0 1 0
1 0 1
1 1 1

 ,

where Tij = 1 means that the transition from j to i is allowed.
We can also use this matrix to count the number of admissible sequences of

a given length. We just need to specify, in the form of a vector, which samples
of length t = 1 the process admits, and then proceed by matrix multiplication.
For instance, suppose we require that the sample paths for this process always
start with one of the symbols 0 or 2; we can then count the sequences of length
2, 3, and 4 by matrix multiplication:

T

 1
0
1

 =

 0
2
2

 ; T 2

 1
0
1

 =

 2
2
4

 ; T 3

 1
0
1

 =

 2
6
8

 .

These product tell us how many sequences there are, split up according to
the last symbol in the sequence. For instance, for t = 3 + 1, there are 2 samples
terminating with the symbol 0, 6 with the symbol 1, and 8 with the symbol 2.
There are thus a total of N(4) = 2 + 6 + 8 = 16 sequences of length 4 that start
with either 0 or 2.

The formulation of the problem in terms of matrix multiplication also gives
us access to some tools from linear algebra. In particular, we know that many
linear mappings have eigenvectors, that is, vectors which are only stretched
by a constant λ, the eigenvalue, when the mapping is applied:

Tv = λv.

It is useful to imagine the initial condition s as decomposed into a linear com-
bination of eigenvectors, since the effect of the linear mapping will then be to

7

simply increase each component by the relevant eigenvalue:

Ts = T (a1v1 + a2v2 + · · ·+ anvn)

= a1Tv1 + a2Tv2 + · · ·+ anTvn

= λ1a1v1 + λ2a2v2 + · · ·+ λnanvn.

Repeated application of the linear mapping will then correspond to repeated
multiplication by the eigenvalues. All the components of the initial condition
will thus change exponentially fast:

T ts =
(
λt1
)
a1v1 +

(
λt2
)
a2v2 + · · · +

(
λtn
)
anvn.

However, since the eigenvalues λ1, λ2, . . . , λn can have different sizes, the
components may not grow at the same rate. In particular, if one of the eigen-
values is larger than the other ones, the corresponding component outgrow the
others at an exponential rate. In the limit, the effect of applying the mapping
one more time will thus be a stretching of the input vector in the direction of the
dominant eigenvector, plus some other effects that are negligible by comparison.

As discussed in many textbooks on linear algebra, we can find the dominant
eigenvector v∗ by selecting the largest root λ∗ of the equation det(T − λI) = 0
and then solving the equation Tv = λ∗v for v. If this is impractical, we can
also simply approximate v∗ by applying T lots of times to an arbitrary initial
condition.

For the matrix T above, λ∗ = 2, and the corresponding eigenvector is

v∗ =

 1
2
3


or any vector parallel to it. For very large t, this process will thus admit vectors
terminating in 0, 1, and 2 in the proportions 1 : 2 : 3, and N(t) will grow by a
factor of about λ∗ = 2 every time we increment t by one. Thus, H = λ∗ = 2.

8

