Exponential Tail Bounds: Exercises

Mathias Winther Madsen

January 13, 2015

Confidence Bounds A coin with bias $p=0.6$ is flipped $t=1000$ times, and we are interested in estimating the probability that more than $q=0.7$ of the coin flips come up heads.

Find a bound on this probability by using

1. Markov's inequality;
2. Chebyshev's inequality;
3. the Chernoff bound.

Compare these results to each other, and to actual probability (about 2×10^{-11}).

Geometric variable Recall that a geometric random variable counts the number of coin flips you have to wait for the first success. When the coin is fair, the mean of this variable is 2 , and its moment-generating function is

$$
G(r)=\frac{e^{r}}{2-e^{r}}, \quad(r<\ln 2)
$$

Suppose now that you add up $t=100$ samples from such a geometric distribution. Bound the probability that this sum exceeds 250 .

