ILLC Project Course in Statistical Learning Theory

Mathias Winther Madsen
mathias.winther@gmail.com
Institute for Logic, Language, and Computation
University of Amsterdam

January 2014

Random Products

Problem

You enter the casino with a capital of $C_{0}=1$. In each round,

1. your capital doubles with 75% probability, and
2. decreases by a factor of 10 with 25% probability.

Is this good news? What will happen after $t=1000$ games?

$$
C_{1000}=F_{1} \times F_{2} \times F_{3} \times \cdots \times F_{1000} .
$$

e.g.,

$$
C_{1000}=2 \times 2 \times \frac{1}{10} \times 2 \times \cdots \times \frac{1}{10} \times 2
$$

Moment-Generating Functions

Definition

The moment-generating function of a random variable X is

$$
G(r)=E\left[e^{r X}\right]
$$

whenever these expected values are well-defined.

Moment-Generating Functions

Definition

The moment-generating function of X is

$$
G(r)=E\left[e^{r X}\right]
$$

whenever this is well-defined.

Example

Suppose $X \sim \operatorname{Bernoulli}(p)$, i.e.,

x	1	0
$\operatorname{Pr}(X=x)$	p	$1-p$

What is $G(r)$?

Moment-Generating Functions

Example

Suppose $X \sim \operatorname{Geometric}(1 / 2)$, i.e.,

$$
\begin{array}{c|ccccc}
x & 1 & 2 & 3 & 4 & \cdots \\
\hline \operatorname{Pr}(X=x) & 1 / 2 & 1 / 4 & 1 / 8 & 1 / 16 & \cdots
\end{array}
$$

What is $G(r)$?
(cf. en.wikipedia.org/wiki/St._Petersburg_paradox)

Exponential Bounds

Problem

Let

$$
S_{t}=X_{1}+X_{2}+\cdots+X_{t}
$$

be a sum of i.i.d. variables.
Which of the following two series diverge the fastest?

$$
S_{1}, S_{2}, S_{3}, S_{4}, \ldots \quad \text { from } \quad q, 2 q, 3 q, 4 q, \ldots
$$

or

$$
e^{S_{1}}, e^{S_{2}}, e^{S_{3}}, e^{S_{4}}, \ldots \quad \text { from } \quad e^{q}, e^{2 q}, e^{3 q}, e^{4 q}, \ldots
$$

Exponential Bounds

Exponential Bounds

Theorem (the exponential Markov bound)

$$
\operatorname{Pr}\left\{S_{t}>q t\right\} \leq\left(\frac{G(r)}{e^{r q}}\right)^{t}
$$

Proof.

The Markov bound plus the fact that

$$
G_{S_{t}}(r)=G_{X}(r)^{t}
$$

Exponential Bounds

Theorem (The Chernoff Bound)

For a sum of t Bernoulli variables with parameter p,

$$
\operatorname{Pr}\left\{\frac{S_{t}}{t}>q\right\} \leq\left(\left(\frac{p}{q}\right)^{q}\left(\frac{1-p}{1-q}\right)^{1-q}\right)^{t} .
$$

Exponential Bounds

Proof.

$$
\operatorname{Pr}\left\{\frac{S_{t}}{t}>q\right\} \leq\left(\frac{p e^{r}+1-p}{e^{r q}}\right)^{t}
$$

Exponential Bounds

Theorem (The reverse Chernoff Bound)

For a sum of t Bernoulli variables with parameter p,

$$
\operatorname{Pr}\left\{\frac{S_{t}}{t}<q\right\} \leq\left(\left(\frac{p}{q}\right)^{q}\left(\frac{1-p}{1-q}\right)^{1-q}\right)^{t} .
$$

Exponential Bounds

$$
\operatorname{Pr}\left\{\left|\frac{S_{t}}{t}-0.5\right|>0.1\right\}
$$

- Chernoff
 - Chebyshev Exact

Exponential Bounds

Theorem (the unit interval Hoeffding bound)
All of the previous theorems are also true for arbitrary bounded variables with $0 \leq X \leq 1$ and $E[X]=p$.

Theorem (the general Hoeffding bound)

For a sum of bounded variables with $a \leq X \leq b$ and $E[X]=p$,

$$
\operatorname{Pr}\left\{S_{t}>q t\right\} \leq\left(\left(\frac{p-a}{q-a}\right)^{q-a}\left(\frac{b-p}{b-q}\right)^{b-q}\right)^{t /(b-a)}
$$

