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Problem 1. Among the 100 applicants for a job, 20 have the necessary quali-
fications. How many of the 100 applicants do you need to interview in order to
be 95% sure to meet at least 10 qualified ones?
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1 Sampling Without Replacement
A bag contains B blue and W white marbles, and that I grab a handful of
marbles out of this bag, all at once. What is the probability that my sample
contains exactly b blue and w white marbles, given that the sample size b + w
is held fixed?

To solve this problem, we need to count the total number of such samples
and then count how many of them that have the required numbers of blue and
white marbles. Since there was a total of B + W marbles in the bag, and that
we grabbed b + w of them, the total number of possible samples was(

B + W
b + w

)
.

We then want to count how many of these samples contain exactly b blue
and w white marbles.

The number of ways we can choose b blue marbles from a pool B is counted
by the binomial coefficient C(B, b). The number of ways we can choose w white
marbles from a pool of W is simarly counted by C(W,w). By combining these
two selections in all possible ways, we thus find that there is(

B
b

)(
W
w

)
ways of selecting a sample of size b+w containing b blue and w white marbles.
The probability of drawing such a “successful” sample is consequently(

B
b

)(
W
w

)
(

B + W
b + w

) .

For instance, if the bag contains B + W = 100 marbles, with B = W = 50, the
probability of observing b = 4 blue and w = 6 white marbles is(

50
4

)(
50
6

)
(

100
10

) =
1727250

8170019
≈ 0.211.

For b = w = 5, this probability is about 0.259, and for b = 10 and w = 0, 0.001.
The probability that we would randomly draw a sample that faithfully rep-

resents the proportions in population is thus substantial, but there is also a
reasonably high probability that the composition of the sample will deviate
slightly from the composition of the population.

The distribution that describe these combinatorical effects is called the hy-
pergeometric distribution. Like the binomial distribution, the hypergeo-
metric distribution counts the number of successes in a sample of a fixed size.
Unlike the binomial distribution, however, it assumes that the population has
a finite size, and that we sample without replacement.
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Figure 1: The probability of drawing b blue marbles when randomly selecting
b + w = 10 marbles from a bag of B blue and W white marbles.

2 Expected Number of Successes
The parameterization of the hypergeometric distribution in terms of B, W , b,
and w is intuitive, but not very convenient for all mathematical purposes. A
more common way of parametrizing the distribution is therefore in terms of the
following parameters:

1. T = B + W , the total pupulation size;

2. t = b + w, the total sample size;

3. S = B, the number of “successes” in the population;

4. s = b, the number of “successes” in the sample.

Using this parametrization, we have the following point probabilities:

Pr (s |T, S, t) =

(
S
s

)(
T − S
t− s

)
(

T
t

) .

In the first of the marbles examples discussed above, for instance, we had
T = 100, S = 50, t = 10, and s = 4. We will consider S, T , and t as parameters
of the distribution of the random variable s.

As you might guess, the expected value of the variable s is

E[s] =
S

T
t.

That is, the proportion of successes in the population scaled up to match the
sample size. In order to prove this formula, we will make use of the following
downscaling identity for binomial coefficients:(

n
k

)
=

(
n− 1
k − 1

)
n

k
.
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Theorem 2. The mean of the hypergeometric distribution is E[s] = tS/T .

Proof. The mean is an average over the S + 1 possible values of s:

E[s] =

S∑
s=0

Pr (s |T, S, t) s =

S∑
s=1

Pr (s |T, S, t) s.

By applying the downscaling identity to the binomial coefficients C(S, s) and
C(T, t) which occur in the hypergeometric probabilities, we can rewrite this as

S∑
s=1

(
S
s

)(
T − S
t− s

)
(

T
t

) s =

S∑
s=1

(
S − 1
s− 1

)(
T − S
t− s

)
(

T − 1
t− 1

) S/s

T/t
s.

After cancelling s/s and pulling tS/T out of the summation, we can make a
change of summation variable to rewrite this once again as

tS

T
×

S∑
s=1

(
S − 1
s− 1

)(
T − S
t− s

)
(

T − 1
t− 1

) =
tS

T
×

S−1∑
s=0

(
S − 1
s

)(
T − S

t− 1− s

)
(

T − 1
t− 1

) .

Now, an inspection of the terms in the sum shows that these are in fact the
probabilities of a hypergeometric distribution with parameters T −1, S−1, and
t− 1. The sum consequently evaluates to 1, and E[s] = tS/T .

Note that this derivation incidentally also shows that decreasing all the pa-
rameters of a hypergeometric distribution by one corresponds to adjusting all
of the probabilities by the factor (s/t)/(S/T ).

3 Statistical Applications
The hypergeometric distribution can be used for a number of interesting things
in statistics. One such application is Fisher’s exact test, a statistical test
that measures whether there is a significant statistical dependence between two
binary variables.

As an example, let’s look the survival rates at the Titanic. There were
T = 2201 people on the ship when it sank, S = 771 of whom survived. Of the
T = 2201 people on the ship, t = 325 held a first-class ticket. We are interested
in making some hypothetical statements about s, the number of people with a
first-class ticket who survived, in order to compare those deductions to reality.

If having a first-class ticket made no difference as to whether you survived
or not, then whe should expect the S = 771 survivors to be randomly scattered
across the two groups, the people with and without first-class tickets. This
would mean that we would expect to find about

E[s] =
tS

T
= 104.98,
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survivers among our sample of t = 325 people. To illustrate how this tendency
would work in practice, here are a few samples from a hypergeometric distribu-
tion with parameters T = 2201, S = 771 and t = 325:

s = 89, 104, 105, 92, 110, 93, 102, 103, 104, 103, 103, 93, 103, 115, 96.

As you can see, these values cluster quite reliably around the mean, 105.
The sample average is s̄ = 101.00, and the largest deviation from the mean in
this sample is roughly |89 − 104.98| = 15.98. So if holding a first-class ticket
really made no difference to your changes of survival, we should thus expect the
survival statistics to give rise to 2× 2 contingency tables like

Survived Died Totals
First-class ticket 100 225 325
Other ticket 611 1215 1876

Totals 711 1490 2201

By contrast, we would be more surprised if we were to see a disproportion-
ately large number of survivors among the first-class ticket holders, as in

Survived Died Totals
First-class ticket 150 175 325
Other ticket 561 1315 1876

Totals 711 1490 2201

These suspicions are confirmed by computing the two point probabilities:

Pr {s = 100 |T = 2201, S = 711, t = 325} ≈ 4.2× 10−2.

Pr {s = 150 |T = 2201, S = 711, t = 325} ≈ 5.7× 10−9.

A value of s = 100 is thus about ten million times more probable than a
value of s = 150 under the independence assumption. This indicates that while
a deviation of about |s − E[s]| = 5 is reasonably likely to happen by chance, a
deviation of |s−E[s]| = 45 is not. This gives you a sense of roughly how much
s varies around its mean, E[s] ≈ 105.

Now that you have a sense of which 2× 2 contingency tables we might plau-
sibly see under the independence assumption, let’s compare that hypothetical
behavior with the actual numbers:

Survived Died Totals
First-class ticket 203 122 325
Other ticket 508 1368 1876

Totals 711 1490 2201

Obviously, this is way outside the bounds of the reasonable under the inde-
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A lady declares that by tasting a cup of tea made with milk she can
discriminate whether the milk or the tea infusion was first added to the
cup. We will consider the problem of designing an experiment by means
of which this assertion can be tested.

...

Our experiment consists in mixing eight cups of tea, four in one way and
four in another, and presenting them to the subject for judgment in a
random order.

...

At best, the subject can judge rightly with every cup and, knowing that
4 are of each kind, this amounts to choosing, out of the 70 sets of 4
which might be chosen, that particular one which is correct. A subject
without any faculty of discrimination would in fact divide the 8 cups
correctly into two sets of 4 in one trial out of 70, or, more properly, with
a frequency which would approach 1 in 70 more and more nearly the
more often the test were repeated.

Ronald Fisher: The Design of Experiments (1935), Chapter II.

pendence assumption. In fact, the probability of the event

G = {s ≥ 203}

is indistinguishable from 0 with the parameter values T = 2201, S = 711, and
t = 325. We can thus conclude that having a first-class ticket is extremely
unlikely to be independent of your chances of survival.

By comparison, the set G = {s ≥ 117} has the more moderate probability of
about 5.4%. It would thus not be completely unexpected to see s = 117 survivers
among the t = 325 people with first class tickets, even under an independence
assumption. Had we therefore observed the value s = 117, we could not have
been quite as confident about our conclusion: 117 is larger than 105, but not
quite enough larger to warrant any strong conclusions.
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