The Law of Large Numbers: Solutions

Mathias Winther Madsen

January 12, 2015

A Markovian Variable Such a variable must have the cumulative distribution

$$
\operatorname{Pr}\{X \leq b\}=1-\frac{E[X]}{b} \quad(b \geq 0)
$$

By differentiating, we can find that it must have the probability density

$$
p(b)=\frac{E[X]}{b^{2}} \quad(b \geq 0)
$$

which happens to be a Pareto distribution.
Coin-Flipping Chebychev When X is a Bernoulli variable with mean μ,

$$
\operatorname{Var}[X]=\mu(1-\mu) \leq \frac{1}{4}
$$

Plugging this bound on the variance into Chebyshev's inequality gives the desired result.

Coin-Flipping Statistics

1.

$$
t=\frac{1}{4 \varepsilon^{2} \alpha}=5 \times 10^{4}
$$

2.

$$
\varepsilon=\frac{1}{2 \sqrt{t \alpha}} \approx 7.1 \times 10^{-2}
$$

3.

$$
\alpha=\frac{1}{4 \varepsilon^{2} t}=2.5 .
$$

