The Law of Large Numbers: Exercises

Mathias Winther Madsen

January 12, 2015

A Markovian Variable Exhibit a variable that meets the Markov bound

$$
\operatorname{Pr}\{X>b\} \leq \frac{E[X]}{b}
$$

exactly for all $b \geq 0$ and sketch its density function.
Coin-Flipping Chebyshev Suppose that S_{t} is a sum of t independent and identically distributed Bernoulli variables (i.e., coin flipping variables with values 0 and 1). Suppose further that their shared mean is $E[X]=\mu$.

Prove that

$$
\operatorname{Pr}\left\{\left|\frac{S_{t}}{t}-\mu\right|>\varepsilon\right\} \leq \frac{1}{4 t \varepsilon^{2}}
$$

Coin-Flipping Inference We flip a coin t times in order to estimate how biased it is, aiming for a precision level of $\varepsilon>0$ and an error probability of $\alpha>0$. Use the previous result to answer the following questions:

1. How many times should we flip the coin in order to achieve a precision of $\varepsilon=10^{-2}$ and error probability of $\alpha=1 / 20$?
2. If we flip the coin $t=10^{3}$ times and want to the error probability to be less than $\alpha=1 / 20$, what precision level can we can obtain?
3. If we flip the coin $t=10^{3}$ times, what is the probability that the empirical frequency of heads deviates from the probability by more than $\varepsilon=10^{-2}$?
