The Law of Large Numbers: Hints

Mathias Winther Madsen

January 11, 2015

A Markovian Variable Use the bound to express what the cumulative distribution

$$
F(x)=\int_{0}^{x} f(u) d u
$$

must look like for such a variable. Then differentiate that cumulative distribution in order to find the corresponding probability density function.

Coin-Flipping Chebyshev What is the variance of a single coin flip? How large can that number be, at the very most? After you've answered those questions, use Markov's inequality on the squared deviation from the mean.

Coin-Flipping Statistics Everything is a matter of solving the equation $1 / 4 t \varepsilon^{2}=\alpha$ for different variables.

