ILLC Project Course in Statistical Learning Theory

Mathias Winther Madsen mathias.winther@gmail.com

Institute for Logic, Language, and Computation University of Amsterdam

January 2015

Random Variables

Expected Values

Definition

The mean or expected value of a discrete variable X is

$$E[X] = p(x_1) x_1 + p(x_2) x_2 + p(x_3) x_3 + \cdots$$

The mean of a continuous variable is the corresponding integral.

Theorem

1.
$$E[X + Y] = E[X] + E[Y];$$

- 2. $E[c \cdot X] = c \cdot E[X]$ when c is a constant;
- 3. $E[X \cdot Y] = E[X] \cdot E[Y]$ when X and Y are independent.

Problem

Which of the following is more probable?

- 1. 600 tails in 1,000 coin flips;
- 2. 600,000 tails in 1,000,000 coin flips.

Problem

A dust particle starts at $X_1 = 0$ and walks one step left or one step right in each time period. Approximately how far away from the origin is the particle going to be after t = 100 time periods?

Ζ		Z		E[Z]
X	-4	0	12	
X - 2	-6	-2	10	
X-2	6	2	10	
$(X - 2)^2$	36	4	100	
$\Pr(Z = z)$	1/4	1/2	1/4	

Ζ		Z		E[Z]
X	-4	0	12	2
X-2	-6	-2	10	0
X-2	6	2	10	5
$(X - 2)^2$	36	4	100	36
$\Pr(Z = z)$	1/4	1/2	1/4	

Definition

The **variance** of a random variable *X* is

$$\mathsf{Var}[X] = E\left[(X - E[X])^2\right].$$

Theorem

- 1. $Var[X] = E[X^2] E[X]^2;$
- 2. $Var[c \cdot X] = c^2 \cdot Var[X]$ when c is a constant;
- 3. Var[X + Y] = Var[X] + Var[Y] when X and Y are independent.

 $\operatorname{Var}[X_1 + \cdots + X_t] = \operatorname{Var}[X_1] + \cdots + \operatorname{Var}[X_t]$

The Markov Bound

Theorem

Suppose that $Pr{X \ge 0} = 1$; then

$$\Pr(X > b) \leq \frac{E[X]}{b}$$

The Markov Bound

 $E[X] \ge E[B] = b \Pr\{X > b\}.$

Theorem (Tchebichef, 1867)

Let

$$S_t = X_1 + X_2 + \dots + X_t$$

be a sum of independent and identically distributed variables with a shared mean E[X] and variance Var[X]. Then

$$\Pr\left\{\left|\frac{S_t}{t} - E[X]\right| > \varepsilon\right\} \leq \frac{\operatorname{Var}[X]}{t\varepsilon^2}$$

Problem

How many times do you have to throw a loaded die in order for the average result to deviate from the expected result by less that $\varepsilon = 1.50$ with a probability of less than $\alpha = .05$?

$$\Pr\left\{\left|\frac{S_t}{t} - E[X]\right| > \varepsilon\right\} \leq \frac{\operatorname{Var}[X]}{t\varepsilon^2}$$

