ILLC Project Course in Statistical Learning Theory

Mathias Winther Madsen
mathias.winther@gmail.com
Institute for Logic, Language, and Computation
University of Amsterdam

January 2015

Random Variables

Expected Values

Definition

The mean or expected value of a discrete variable X is

$$
E[X]=p\left(x_{1}\right) x_{1}+p\left(x_{2}\right) x_{2}+p\left(x_{3}\right) x_{3}+\cdots
$$

The mean of a continuous variable is the corresponding integral.

Theorem

1. $E[X+Y]=E[X]+E[Y]$;
2. $E[c \cdot X]=c \cdot E[X]$ when c is a constant;
3. $E[X \cdot Y]=E[X] \cdot E[Y]$ when X and Y are independent.

Variance

Problem

Which of the following is more probable?

1. 600 tails in 1,000 coin flips;
2. 600,000 tails in $1,000,000$ coin flips.

Problem

A dust particle starts at $X_{1}=0$ and walks one step left or one step right in each time period. Approximately how far away from the origin is the particle going to be after $t=100$ time periods?

Variance

Z	z			$E[Z]$
X	-4	0	12	
$X-2$	-6	-2	10	
$\|X-2\|$	6	2	10	
$(X-2)^{2}$	36	4	100	
$\operatorname{Pr}(Z=z)$	$1 / 4$	$1 / 2$	$1 / 4$	

Variance

Z	z			$E[Z]$
X	-4	0	12	2
$X-2$	-6	-2	10	0
$\|X-2\|$	6	2	10	5
$(X-2)^{2}$	36	4	100	36
$\operatorname{Pr}(Z=z)$	$1 / 4$	$1 / 2$	$1 / 4$	

Variance

Definition

The variance of a random variable X is

$$
\operatorname{Var}[X]=E\left[(X-E[X])^{2}\right] .
$$

Theorem

1. $\operatorname{Var}[X]=E\left[X^{2}\right]-E[X]^{2}$;
2. $\operatorname{Var}[c \cdot X]=c^{2} \cdot \operatorname{Var}[X]$ when c is a constant;
3. $\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]$ when X and Y are independent.

Variance

$\operatorname{Var}\left[X_{1}+\cdots+X_{t}\right]=\operatorname{Var}\left[X_{1}\right]+\cdots+\operatorname{Var}\left[X_{t}\right]$

The Markov Bound

Theorem

Suppose that $\operatorname{Pr}\{X \geq 0\}=1$; then

$$
\operatorname{Pr}(X>b) \leq \frac{E[X]}{b}
$$

b

The Markov Bound

$$
B=\left\{\begin{array}{llc|ccc|cc}
b & (X>b) & X & 0 & 1 & 2 & 3 & 4 \\
0 & (X \leq b) & B & 0 & 0 & 0 & 2 & 2 \\
\hline & \operatorname{Pr} & .25 & .10 & .25 & .30 & .10
\end{array}\right.
$$

$$
E[X] \geq E[B]=b \operatorname{Pr}\{X>b\}
$$

The Weak Law of Large Numbers

Theorem (Tchebichef, 1867)

Let

$$
S_{t}=X_{1}+X_{2}+\cdots+X_{t}
$$

be a sum of independent and identically distributed variables with a shared mean $E[X]$ and variance $\operatorname{Var}[X]$. Then

$$
\operatorname{Pr}\left\{\left|\frac{S_{t}}{t}-E[X]\right|>\varepsilon\right\} \leq \frac{\operatorname{Var}[X]}{t \varepsilon^{2}}
$$

The Weak Law of Large Numbers

The Weak Law of Large Numbers

Problem

How many times do you have to throw a loaded die in order for the average result to deviate from the expected result by less that $\varepsilon=1.50$ with a probability of less than $\alpha=.05$?

$$
\operatorname{Pr}\left\{\left|\frac{S_{t}}{t}-E[X]\right|>\varepsilon\right\} \leq \frac{\operatorname{Var}[X]}{t \varepsilon^{2}} .
$$

The Weak Law of Large Numbers

